The functional prototype took a dramatic turn from the previous plans. The biggest decision was to replace the breadboard with the Arduino Lilypad, which was more apparel-friendly appearance and weight wise. Alex began programming and assigning the different components on the suit to pins. Organizing the conductive thread paths was truly a challenge- after some labor for planning and hours and hours of sewing, the threads created a beautiful design pattern on the suit. I've never done so much sewing in my life, and my sewing skills have definitely improved after this experience.
My primary job was to design and construct a skirt that would complement the suit. I wanted the skirt to be architectural and voluminous- because we were envisioning the final product to be on a runway, appearance and design quality were great priorities. Using strips from reflective silver paper used to create Christmas bows with lots of double-sided tape, I created chunks of curved planess.
After creating a significant number of "bubble planes" to wrap up the body, I used the chicken wire to build a voluminous support. To enforce volume and architectural dimension to the skirt, I needed a stable wire support, and the chicken wires were light and malleable enough to work with.
Because the skirt was to be a "wearable" component, it had to adjustable to various waist sizes. I sewed in a velcro belt so the skirt would unwrap and provide a more feasible wearability. After constructing the chicken wire mold, I used the glue gun to attach the bubble planes. It was great that the material for the planes was easily bendable- I bent the planes to accomodate and create curves and the glue gun melted the metal paper right into the wires.
The final product complemented the suit very well. The silver gradients matched the white suit with the gray conductive thread patterns and accentuated the futuristic fashion. One warning was to prevent the wires from touching the threads.
For the final presentation, we made sure the threads were sealed with fabric paint and the LEDs were well connected.
The functional prototype looked awesome! Unfortunately, the bluetooth was having trouble because of the low power supply, and the LED panel simply refused to listen to the computer commands. Also, the beautiful thread design made the stretchy suit not so stretchy, making the fitting really difficult.
The project needed a follow-up. After the presentation, the group gathered one more time to troubleshoot the LED panels, not through the bluetooth, but directly with the computer. The LEDs were controlled by their coordination and gave a great visual impact.
The bubbles, once lighted up, were beautiful attractions. The videos below show demonstrations for the panel and the bubbles.
Bubble Pop Electric was truly an exciting project. I learned so much about wearable, tangible interfaces and gained so much insight about the structure of the arduino lilypad and its endless functionalities. It was extremely rewarding to see the LEDs highlight the suit, and I hope I could extend my knowledge and experience to create more engaging and powerful interactive tools in the future.
I have always wanted to create wearable peices with led's...one day i will find out how but your creation is a lot of hard work for a pretty sweet end its really cool : )
ReplyDelete